2026/02/06 09:37 1/2 der _richtige_io_sheduler

e ,noop“ - wie der Name schon sagt, scheduled der gar nichts. Simples FIFO-Queuing fur alle I/0
Requests egal woher sie stammen. Ist gedacht fur wirklich intelligente Hardware, die ihr
eigenes internes Scheduling macht, und wo jedes Scheduling durchs OS kontraproduktiv ware.
(Etwa SANs, kdnnte ich mir vorstellen.) Update: Angeblich ist dies auch der beste Scheduler fur
Flash-Medien.

e ,deadline”: 1/0-Requests werden nach der Blocknummer sortiert in eine Warteschlange
eingeordnet unabhangig woher sie stammen. Diese Queue wird dann zyklisch von vorn nach
hinten abgearbeitet. Damit 1/0-Requests nicht unmaRig warten mussen falls die Schlange zu
lange wird, werden die I/O-Requests Uberdies in separate FIFOs flr Read und Write-Requests
eingeordnet, nach Alter sortiert. Jedem Request wird dabei eine Maximaldauer zur Erledigung
zugewiesen. Solange diese Maximaldauern nicht Uberschritten werden werden die 1/0s wie
zuvor beschrieben in der Sortierreihenfolge der Blocknummern durchgefiihrt. Sobald die
Maximaldauern aber Uberschritten werden, werden nur mehr abwechselnd die altesten Read-
und Write-Requests aus den FIFOs bedient, bis sich die Situation wieder gebessert hat - dann
wird wieder das zyklischen Schedulen in Blockreihenfolge angeworfen.

e anticipatory”“: Tut dasselbe wie ,deadline”, wartet aber nach jedem 1/0-Vorgang (ich hoffe nur
bei Schreibvorgangen aus den Deadline-FIFOs) einige Millisekunden ob vielleicht ein Nachfolge-
Request daher kommt. Dadurch werden zahlreiche sequenzielle 1/0s besser unterstitzt, welche
an verschiedenen Stellen der Disk gleichzeitig erfolgen. Sprich, wenn verschiedene Prozesse zur
selben Zeit verschiedene Dateien bearbeiten. Der ,deadline” geht dabei namlich ziemlich ein
und ,seekt” sich blod.

e cfq“: Der ,Completely Fair Queueing” Scheduler arbeitet vollig anders. Er scheduled
Zeitscheiben, in denen nur die I/O eines bestimmten Prozesses auf die Disk erfolgt. Die GroRe
der Zeitscheiben ist von Statistiken und der Prozessprioritat abhangig, und ausserdem wird
innerhalb eines Prozesses noch zwischen synchronen und asynchronen Requests unterschieden.
Aber zwischen den Prozessen gibt es ein Round Robin, daher kommt jeder Prozess nach einer
relativ kurzen Zeit wieder dran, und keiner ,,verhungert” auch wenn sehr viel I/O durchzufuhren
ist.

Der cfq ist der komplexeste der I/O Scheduler, reagiert aber am schnellsten. Daher ist es fur den
typischen Desktop-Betrieb normalerweise der am besten geeignete I/O Scheduler. In vielen Linux-
Distris wird er daher auch als Default-Scheduler eingesetzt.

Allerdings scheduled der cfq die Requests nicht optimal aus der Sicht der Arbeit welche die Disk zu
erledigen hat. Hier ist der anticipatory normalerweise am effizientesten - insbesondere wenn Batch-
Jobs laufen die ihrerseits jede Menge sequenzielle Dateien (gleichzeitig) bearbeiten. Auch zum
Ansehen von Videos etc. ist er wohl der geeignetste.

Der deadline wiederum glanzt bei volligen Random-Zugriffen, wie sie vor allem bei Datenbanken oft
vorkommen. Hier sorgt er dafir, dass die Seeks minimiert werden welche fur das Durchfuhren der
Random-Zugriffe erforderlich sind. Zwar ist der anticipatory dem deadline sehr ahnlich, aber durch die
kleinen Wartepausen die er einlegt um ,, Sequenzialitat zu erkennen” (die bei Datenbankzugriffen
nicht vorkommt), vergeudet das anticipatory Zeit welche der deadline nicht vergeudet.

Wenn Datenbankzugriffe aber nicht andauernd erfolgen, kann der anticipatory doch wieder besser
sein: Bei Datenbankzugriffen zwar etwas langsamer, kann er aber zwischendurch bei sequenziellen
Zugriffen wieder Zeit und Seeks sparen.

Wenn neben den Datenbanken und Batch-Jobs aber auch noch ,normal” gearbeitet werden soll,
empfiehlt sich wieder der cfq: Durch seine Zeitscheiben werden auch sequenzielle Jobs - zumindest

DEEPDOC.AT - enjoy your brain - https://wiki.deepdoc.at/dokuwiki/

Last update: 2025/11/29

22:06 der _richtige_io_sheduler https://wiki.deepdoc.at/dokuwiki/doku.php?id=der_richtige_io_sheduler&rev=1289209339

innerhalb der Zeitscheibe - halbwegs effizient abgearbeitet, durch seine verschieden langen
Zeitscheiben kann er aber auch Datenbanken ausreichend effizient bedienen obwohl nicht ganz so
gut wie der deadline. Vor allem aber verhungern wahrend dessen keine interaktiven
Benutzerprozesse.

Ich werde aus diesen Erkenntnissen die Konsequenz ziehen, den cfq als Default-Scheduler
einzustellen.

Wenn ich aber fette Batch-Jobs laufen lasse, wie grolRe emerge-Orgien wo der Compiler standig
sequeziell Source-Dateien liest und Object-Files erzeugt, werde ich temporar auf den anticipatory
umschalten. Dasselbe gilt beim Movie-Ansehen, oder wenn sehr grol3e Dateien mdglichst schnell
durch die Gegend kopiert werden sollen und mir Interaktivitat wahrenddessen nicht so wichtig ist.

Wenn ich hingegen einen Rechner als dezidierten Datenbankserver unter hoher Last einsetze, ist
hingegen der ,deadline” die beste Wahl. (cfq durfte auch OK sein wenn die Last nicht ganz so hoch
ist.)

Tja, soweit meine Erkenntnisse.
Hier noch wie man die Scheduler umschaltet (geht im laufenden Betrieb):
<pre>

1. ! /bin/sh

SCHEDULER=${1:-cfq} Ismod | grep ,$SCHEDULER[-liosched” > /dev/null 2>& 1 || {
modprobe "$SCHEDULER-iosched"
} for D in /sys/block/*; do

S="$D/queue/scheduler"
test -e "$S" || continue
echo "Assigning $SCHEDULER to $S."
echo "$SCHEDULER" > "$S"

done

Aufruf: <pre> set_iosched cfq set_iosched # setzt ebenfalls cfq set_iosched noop set_iosched
anticipatory set_iosched deadline

Oder fur ein Blockdevice setzten: <pre>echo anticipatory > /sys/block/hdc/queue/scheduler

From:
https://wiki.deepdoc.at/dokuwiki/ - DEEPDOC.AT - enjoy your brain

Permanent link: }
https://wiki.deepdoc.at/dokuwiki/doku.php?id=der_richtige_io_sheduler&rev=1289209339 E

Last update: 2025/11/29 22:06 Ex o

https://wiki.deepdoc.at/dokuwiki/ Printed on 2026/02/06 09:37

https://wiki.deepdoc.at/dokuwiki/
https://wiki.deepdoc.at/dokuwiki/doku.php?id=der_richtige_io_sheduler&rev=1289209339

